

# Secure Software Agents and Agent-based Security Systems

Steven Y. Goldsmith, DMTS
Distributed Systems Assurance Research







# History: Engineered Collectives Grand Challenge

- s Challenge: How can we design large collections of cooperating entities to solve real-world problems with predictable behavior? What problems can be solved only this way?
- s Answer: Intelligent Agents
- s Primary problem addressed: The malicious insider security problem



## **Defeating Malicious Insiders**



## Today's information security approaches are failing against the modern cyber-threat.

Information security features are implemented hierarchically (e.g. system administration functions, intrusion detection systems, PKI cryptography, "need-to-know" products)

- y Significant vulnerability to insider threat
- Single points of failure and opportunity to adversaries
- y Difficult to scale

Challenge: provide high security and high functionality to users, without trading them off against each other.





#### What is an Agent?





- s A computer program
- s Adheres to certain architectural constraints
- s Incorporates particular concepts and technologies
  - Distributed
  - y Knowledge-based









#### **Intelligent Agent Attributes**



These "Heavyweight" Agents are:























#### **Autonomy**



- s Operate without significant human intervention
- s Maintains self-integrity
- s Evaluates requests and elects to respond
  - y Agent lifecycle
  - y Long-lived agents





#### Reactivity



- s Respond to stimuli from the environment
- s Determine responses by simple pattern recognition
  - y Limited by the lack of domain modeling
  - Minimal historical information



#### **Proactivity**



- s Pursue normative goals
- s Initiate processes and actions of their own volition
- s Deliberate before acting using internal models of the environment

- y Motivated agents
- y Knowledge-based agents





#### **Social Ability**



- s Communicate with other agents
- s Collaborate to solve problems
- s Strive to maintain collective states

- y Shared knowledge
- y Communicative acts





#### Adaptation



- s Alter behaviors in response to changing environments
- s Learn new situation-response patterns

y Reactive agents





#### Learning



- s Alter their internal models
- s Add new knowledge
- s Create new goals

y Proactive/Deliberative Agents





#### **Mobility**



## s Move code the network to perform computation

- Mobile code
- y Mobile agents



#### What is a Collective?



#### Secure Agent Collective:

Secure software agents organized into a security architecture that significantly improves the security of the distributed information system of which they are part, even against malicious insiders.







# The Secure Agent Collective Provides:



- s Strong security at the application layer
- s Security that also reaches down into the Operating System
- s Invisible management of security for the user
- s Distribution of the trust in the system
- s Explicit security policy, enforced by secure processes





#### Our Agents Are Designed to Be Suspicious of Their Environment

#### Strong security at the application layer...

- s They identify packet and stream patterns prior to service dispatch
- s They rapidly classify unusual data streams--much more rapidly than people
- s They require authentication for many data streams
- s They can discriminate self from non-self
- s They can close ports when threatened





schemata ,



## **Reactive Component**







## **Deliberative Component**









#### Integration of Real-time Linux Enhances the Agent's Efficacy

#### Security that reaches down into the OS









# Red Teaming Is a Critical Part of the Development Process and a Metric of Success

We Red Teamed our Secure Agents Model...

- s First Red Team exercise completed 2QFY00:
  - Red team did not halt any agent process nor damage or acquire any designated document
  - y Agents detected port scans, floods, and unauthenticated messages and communicated this to one another
  - y Agents selectively discarded unexpected inputs
- Second Red Team exercise completed 4QFY00:
  - y System demonstrated protection against malicious insider challenges
  - Protocol and other problems identified by Red Team were repaired within hours





## Our Experiments Have Demonstrated the Capabilities Of Our Agent Collectives

- s Agents perform missions not possible by other means
- s Agents protect themselves from attacks
- s Agents monitor networks for security
- s Agents enforce security policies
- s Agents cooperate with administrators
- s Agents collaborate to protect networks
- s (Agents attack adversaries)
- s (Agents perform vulnerability analyses)





# **Embedded Secure Network**Agent







## Operational Concept: Agent-Mediated Access







#### **External Recognition**



- s Scientific American (12/2000)
- MIT Technology Review (10/2000)
- s Albuquerque Journal
- s Focus (7/26/2000)
- s Red Herring (11/2000)
- s Business 2.0 (9/28/2000)
- s Government Computing News
- s Beyond 2000
- s ...many others









#### **Hypotheses Validated**



- s Iterative red-teaming is essential to the research.
- s Security must be a *fundamental* requirement in the initial development of the agent architecture.
- s Forcing the adversary to incur the cost of Class III attacks is essential. We can defend against Class I and Class II attacks.
- s Agents can provide unprecedented security together with extraordinary functionality.
- s This systems approach has extraordinary promise.

